BGJDNS

By: Brian Jared

[image: image1.png]Details

bgjdns

4s0.93.0r9
cvs.g3.0rg
ddr.g3.0rg
fixi.g3.org

DNS Query.

An IPv4 Authoritative DNS Server with djbdns exporter and OpenLaszlo User Interface
A CSCI 443 Semester Project Report
December 16th, 2005

Background
At Monster Worldwide (http://www.monster.com/) we had a huge collection of DNS records. We used a set of name service programs written by D. J. Bernstein (http://cr.yp.to/). The two programs we used were “tinydns” a authoritative DNS service that we used to serve DNS records of domains we owned, and “dnscache” which was an internal DNS server that would perform the recursive lookups.
The NOC, which has people there 24x7, couldn’t update DNS because they simply haven’t been trained to do it. We would receive anywhere from 1-10 DNS update requests per day, and occasionally an “emergency” request that would wake us up during the night. One thing that I try to live by, is that “Computers were created to make out lives easier.” If I have to wake up at 1:30 to something that could be one by somebody else who was already awake then, in my opinion, that computer has failed to perform its duty. Enter, my project.

Goals
I wanted to simply convert the djbdns data file into an Oracle database, and then have a GUI editor (PHP was my intended technology of choice at the time) that could allow non-adminstrators to update DNS when they needed. Then, a regularly scheduled task would dump the database back into the djbdns format so the name servers would see the change as close to real-time as possible.

Having done a few mysql+PHP projects, I felt this wasn’t going to be challenging enough for me, and might not be enough to make a good semester project. So, I decided to make things interesting, and throw in the goal of creating a DNS server that would use this data real-time, rather than making the export script to an existing service that wouldn’t have real-time updates. (In hind-sight, I think I could have made a “Activate” button or something to run the scheduled task immediately, and the changes could have taken effect after any changes were made, but we’d still run into the problem of concurrent users trying to write that large text file at the same time.)
Technologies Used
For the server, I used perl. I found a Net::DNS::Server module that was very handy in making the networked portion of the server. I used the perl DBI module for database connectivity.

For the GUI, I used a fairly new technology called OpenLaszlo. The programming language for this is XML and Javascript. This is a technology that a coworker and I want to use to make a nice user interface for some monitoring and graphing tools that would otherwise have their own complex interfaces, and I felt using it in my project would be a great way to get my feet wet. It takes the XML and Javascript and compiles it into a SWF (Shockwave Flash) file, and presents it to the web browser. The benefit of this, is that it will work on any computer that has the Flash plug-in. Flash has a greater chance of being on a machine than a JRE, so that is some kudos for the OpenLaszlo creators on their great technology.
OpenLaszlo gets data via XML. There’s no exception. So, in order for the GUI to get the data I wanted to present to the user, I had to implement a script that would communicate with the database, and present the data in XML format for the GUI. I used PHP for this portion of the project.

For importing the data from the djbdns data file, I used a perl script. The perl script had to do more logical processing of the data than I initially expected, and instead of simply interfacing with the database like the DNS server portion, I had it dump the SQL statements into different text files, depending on the tables they were inserting into. This was good, because I had to test the output, and sometimes perform a manual “DELETE from <table> WHERE id>0” after a botched import. I also learned how to reset the SEQUENCEs in Oracle.

After getting all the data imported into Oracle, I figured I would have my web server connect to firebird.cs.iupui.edu via ODBC. Well, this required the DBI::Oracle module for perl, which in turn required me to install the 450+MB Oracle client software. I figured there was an easier way. I jumped on firebird.cs.iupui.edu and tried perl there, with the same module dependencies, but with the additional problem of having a quota limit. I figured I’d give Java a try, since I know it has a JDBC interface which supposedly can work with Oracle. I’ve never programmed in Java, and the few examples I found with examples on how to connect to the database weren’t helping me. I spent an hour or two trying to get that to work, and decided to use an entirely different database, MySQL.

This required me to remove the “CREATE SEQUENCE” statements from my SQL files, and alter the export script to use data types that MySQL wouldn’t complain about.

Implimentation
Importing the data wasn’t too bad. I discovered I had a 4-table JOIN that my server with 256MB didn’t like very much. Thankfully I discovered I was referencing 2 more tables than I really needed, so I was able to correct that issue.

After importing the data, I was ready to make the user interface. This required some interface design planning, which I’m not very good at. Drawing sketches on a piece of paper really helped me, and with my heavy use of DNS in the workplace, I was able to come up with a fairly slick interface.

One of the main things we always had a problem of when adding new DNS entries, is failure to check to see if it already exists in the database. So, the first and foremost feature of the BGJDNS interface is a search box and button. DNS specifications say that there cannot be more than one CNAME for a domain name, and it can’t have other data associated with it. So, sometimes we had problems with our DNS servers not answering as we had intended, due to human error. A good graphical interface, and proper use of a database, I felt, could take care of these checks and balances we often forgot.

Once the GUI had some things that were clickable and movable, I decided to test the database communication. I initially thought I was going to use a perl script to communicate with the Oracle database (not expecting PHP to be on our CSCI servers), but with my migration to MySQL on my server, I felt PHP was a natural candidate for XML presentation over HTTP.

The search.php script takes a single argument, a “searchstr” which can have anything in it. The call that the GUI makes upon typing “mydomain.com” in the search box and then clicking of the “Search” button is:

http://g3.org/bgjdns/search.php?searchstr=mydomain.com
I had to make sure the PHP script replied with a Content-Type of “text/xml” and present the data in a reasonable XML format. I failed to make a DTD for this project, since it’s (from what I’ve read) optional. I found that browsers have built-in XML parsing/viewing that makes exploring the data a little easier than just scrolling up and down the XML text in a raw format, so debugging this script wasn’t too bad. I wanted to use an XML API, but not having done anything with XML before, I couldn’t find anything that seemed to do what I wanted. I still have a slight belief that there was something I could have used, but I just didn’t understand the terminology to comprehend that it was what I was looking for.

I tested the XML presentation script with my GUI, and quickly discovered that searches that resulted in more than 20 records brought the Flash plug-in of the browser to a screeching halt. Luckily I discovered some OpenLaszlo tricks that give it a “Lazy” way of replicating the data into the rendered components of the UI, to where I could get 1000+ records without it missing a beat.

Once I had the data searching and presentation communicating properly with the GUI, I added the option to click on the record types to obtain their full details.

Coming down to the wire, I remembered my goal of creating a DNS server. So, I had to put OpenLaszlo coding on hold while I figured out how to do this seemingly daunting task. This was actually an easier feat than I had anticipated, and I think I annoyed my friend every time I had added a new feature. “I jut got the SOA query working!” “I just got the CNAME query working!” I get so excited when goals come closer and closer to fruition.

I worked on polishing a few things here and there (back-end scripts, typos, etc) and then I started working on the presentation. Luckily, I think about projects like this all day and night, to where my wife wonders if I’m paying attention to her. I concluded early on that I would have to give a brief introduction on DNS technology, but I also know it takes someone the first 4 chapters of reading, “DNS and BIND” (ISBN: 0596001584) to get an idea of how DNS works. I had to do it in 5 minutes. I decided a good introduction to DNS would be a pseudo real-life scenario with a simplified graphic of the network components.
Database Specific Components

Throughout the semester, I kept having this feeling that I was going to change my project. Especially once we were introduced to the 3 different levels of query types. I had a tough time thinking of any complex queries, since DNS, by nature, is fairly slim-lined. But, since I proposed this project as a challenge to myself, I finally determined that I wasn’t going to be defeated by it.

One thing I had planned on doing is comparing the response of my DNS database to that of the production database at Monster Worldwide. Since I changed jobs mid-semester, I didn’t have that luxury of comparison. I’m fairly confident that my solution would be slower, since it is written in an interpreted language (Perl as opposed to Dan Bernstein’s compiled C programs) and also the overhead of a DBMS. Dan Bernstein creates a “data.cdb” file from the text files (as shown in the Powerpoint presentation) which is “…a binary format designed for fast access by tinydns.” –djb (http://cr.yp.to/djbdns/tinydns-data.html)

I imagine if my software was deployed at some place like Yahoo!, eBay or Google, I’d probably observe failures in my technology choices of perl and MySQL.
My most complex query was the query built to determine where a query was coming from, and match it with the access groups defined in the database. Basically the comparison I used was very elegant. Let’s say we’re performing a DNS lookup from 10.10.17.21 (my desktop’s IP address when I was at Monster Worldwide). In the database we have some access groups:

	Location
	Network
	Network Mask

	EX
	0.0.0.0
	0.0.0.0

	IN
	10.69.2.0
	255.255.255.0

	IN
	10.0.0.0
	255.0.0.0

I discovered the best way to determine if an IP address was in a subnet, was to apply each network mask to each client IP address, then compare with the associated Network in that access group’s tuple. Since IP addresses are essentially 4 octets of binary data, a bit-wise AND between the IP address and the netmask will chop off the bits that can be “anything” and retain the bits that “must exist”.
10.10.17.21 & 0.0.0.0 =

0.0.0.0

10.10.17.21 & 255.255.255.0 =
10.10.17.0

10.10.17.21 & 255.0.0.0 =

10.0.0.0

As you can see, our IP address actually matches two locations. Location EX (0.0.0.0) and location IN (10.0.0.0). There is no match in our table for 10.10.17.0 in the network column. This isn’t much of a dilemma if the number of rows returned is limited to 1, and it is the most restrictive access group in the list. I performed this with an “ORDER BY net_octet1 DESC,” which in this case would put the 10.0.0.0 network first, and be the only row returned. The query is shown in the Powerpoint presentation.
After obtaining the location of the tuple, we can then make a query where a condition must exist that the DNS record sent back to the client must be in that access group.
Conclusion
This project was fun and I enjoyed the utility of the project, and how it could be implemented in a production environment. In hindsight, I think I should have done something with more potential for complex queries, but I didn’t think changing my project mid-stream was going to be beneficial to me. The foosball database I had created before the semester would have been a great candidate for some complex queries, determining who is the most improved player from week to week, or month to month, or overall, who tends to lose against who, which offense/defense match-ups are most even, etc. I guess I can still do those types of queries if wanted, but in my free time.
I used to rely on external processing for database data, and after this class I feel there are a lot of queries I could have performed in strictly SQL, without the external program doing multiple queries and making calculations. I’m pretty happy with how my project turned out, but I wish I could have finished the GUI to where it would let me change and add records into the database, so I could have shown a more real-time example of how the database resolves the problems mentioned at the beginning with concurrent editing and learning curve issues.

Sources
OpenLaszlo - http://www.openlaszlo.org/
PHP - http://www.php.net/
MySQL - http://www.mysql.com/
Djbdns - http://cr.yp.to/djbdns.html
RFC1035 “Domain Names – Implementation and Specification” - http://rfc.net/rfc1035.html
Net::DNS::Server (perl module) - http://search.cpan.org/dist/Net-DNS-Server/Server.pm
DBI (perl module) - http://search.cpan.org/~timb/DBI-1.50/DBI.pm
